LECTURE OUTLINE

- An overview of the structure of hemoglobin.
- Different types of hemoglobin.
- Definition of hemoglobinopathies
- Sickle Cell Disease and Hemoglobin C

HEMOGLOBIN

- It belongs to the class of proteins referred to as Globular Heme Proteins.
- Heme is made of protoporphyrin and iron.
Porphyrin is complex of four pyrrole rings connected by methenyl bridges. Methenyl bridges (=HC-) are indicated by dotted lines.

A porphyrin (Tetrapyrrole)

Structure of a simple porphyrine.
HEME IS A TETRA PYRROLE
- Composed of:
 - Protoporphyrin
 - Iron (Fe) ion (charged atom) held in a heterocyclic Porphyrin ring

ATTACHMENT OF HEME IRON TO THE GLOBIN CHAIN. (HEMOGLOBIN MONOMER)

ATTACHMENT OF HEME IRON GLOBIN CHAIN IN THE PRESENCE OF OXYGEN
Slide 10

- HEME is synthesized in the mitochondria.
- Globin synthesis occurs via transcription and translation.
- Heme and globin are joined together in the cytosol.

Slide 11

HEMOGLOBIN
4 HEME + 4 GLOBIN CHAINS

Slide 12

BIOLOGICAL FUNCTIONS OF HEMOGLOBIN

- Hemoglobin performs two vital and major transport functions:
 - Transport, and maintenance of Oxygen supply to peripheral tissues.
 - Transport of CO$_2$ & Protons (H$^+$) from peripheral tissues to respiratory organ for subsequent disposal.
- Hb acts as an important blood pH buffer.
GLOBIN CHAINS
- The genes for the synthesis of globin are present on chromosome 11 and chromosome 16.
- This determines the different variants of haemoglobin present at different ages.

EMBRYONIC LIFE
- Embryonic Haemoglobin is referred to as Gower's Haemoglobin.
- Embryonic Haemoglobin (2 Epsilon and 2 Zeta chains)

FETAL HEMOGLOBIN
- HbF
- Fetal Haemoglobin (2 Alpha and 2 Gamma chains)
- Hemoglobin F (α2γ2)
ADULT HEMOGLOBIN

- Hemoglobin A and Hemoglobin A2
- Hemoglobin A (2 Alpha and 2 beta chains) and Hemoglobin A2 (2 alpha and 2 delta chains)

ADULT HEMOGLOBIN

- In adults (Adult Hb):
 - Hemoglobin A (α2β2) - normal amount over 95%
 - Hemoglobin A2 (α2δ2) - normal range of 1.5-3.5%
 - Hemoglobin F (α2γ2) – normal range < 1%

HEMOGLOBINOPATHIES

- An inherited mutation of the globin genes leading to a qualitative or quantitative abnormality of globin synthesis

- Classified as
 - Quantitative
 - Qualitative
Slide 19

- **Structural abnormalities (Qualitative abnormalities)**
 - Sickle cell haemoglobin.
 - HbC disease.

- **Insufficient synthesis (Quantitative abnormalities)**
 - Thalassemia

Slide 20

SICKLE CELL DISEASE

- Basic abnormality is in beta chain.

- Due to a point mutation in the β-globin gene there is a variation in the β-chain gene (Chromosome 11).

- The form of hemoglobin in persons with sickle cell anemia is referred to as HbS.

Slide 21

SICKLE CELL DISEASE

![Diagram showing the genetic and molecular basis of sickle cell disease](image-url)
SICKLE CELL DISEASE AND SICKLE CELL TRAIT

- Sickle Cell Trait - Heterozygous (HbAS)
- Sickle Cell Disease - Homozygous (HBSS)

THE UNDERLYING PROBLEM IN SICKLE CELL ANEMIA IS THAT THE CHANGE RESULTS IN HB TETRAMERS THAT AGGREGATE INTO ARRAYS UPON DEOXYGENATION IN THE TISSUES

This aggregation leads to deformation of the red blood cell making it relatively inflexible and unable to traverse the capillary beds.

FACTORS THAT FAVOR DEOXY HEMOGLOBIN

- Decreased partial pressure of Oxygen (High Altitude)
- Decreased pH (when H+ ions bind with Hb, it results in release of oxygen)
- Increased partial pressure of carbon dioxide (exercise)
- Increased 2,3 Bisphosphoglycerate
CLINICAL FINDINGS IN SICKLE CELL DISEASE
CHRONIC ANEMIA AND HYPERBILIRUBINEMIA

- The continual destruction of the sickled red blood cells leads to:
 - Chronic anemia (Sickle Cell Anemia) 20 days
 - Episodes of hyperbilirubinemia.

CLINICAL FINDINGS IN SICKLE CELL DISEASE
SEVERE BONE PAIN

- Because bones are particularly affected by the reduced blood flow, frequent and severe bone pain results.
- This is the typical symptom during a sickle cell "crisis".
CLINICAL FINDINGS IN SICKLE CELL DISEASE
DAMAGE TO THE INTERNAL ORGANS (PAIN ATTACKS)

Long term the recurrent clogging of the capillary beds leads to damage to the internal organs, in particular the kidneys, heart and lungs.

DIAGNOSIS

- Hemoglobin Electrophoresis

LIFE SAVING TREATMENT

- Exchange Transfusion

TREATMENT

- Hydration
- Analgesics
- Antibiotics
- Blood transfusions
- Hydroxyurea (leads to increased production of gamma globin chain leading to less sickling)
HEMOGLOBIN C

- In hemoglobin C, mutation at the same point results in replacement of glutamic acid by lysine.

- It is not symptomatic mostly.